
Lecture Notes - Sediment Transport – The flow problem   

Overview 
In the last lecture, we emerged with a transport model in which the rate of 
transport qs depends on the shear stress τ.  Recall that, for the typical range of 
flow in coarse-bedded streams, τ rarely exceeds the critical value τc by more 
than about a factor of two, and that, over this range, the transport model is very 
steep and strongly nonlinear.  This places a premium on getting τ correct, 
because small errors in τ can lead to very large errors in estimated transport rate.  
Unfortunately, getting a good estimate of τ is not an easy thing.  In this lecture, 
we will consider how to estimate τ and consider three factors that make 
determining τ difficult.  In the fourth lecture, we will return to the issue, and 
suggest an alternative approach (in effect, when we use a few transport samples 
to calibrate a transport model, we are calibrating our estimate of τ) 

There are three basic reasons why it is difficult to estimate the τ driving the 
transport: 

(1) unsteady and nonuniform flow: although often neglected,  accelerations in 
the flow can have a substantial effect on τ. 

(2) total stress vs. grain stress, or skin friction: although we can estimate the 
total force per area acting on the channel boundary; only a portion of this total 
stress acts on movable grains to produce transport.  Determining this portion is 
called “drag partitioning”, the methods for which are approximate. 

(3) spatial variability: τ tends to vary across and along the channel.  Although 
the total τ acting on a section can be determined, and the grain stress estimated, 
the nonlinear nature of the transport function means that a prediction based on 
the total τ can be inaccurate. There are ways to estimate local shear stress, but 
these require local measurements, or extensive detailed information about the 
channel topography and bed material.   

1a.  Boundary stress in steady, uniform flow 
By steady, we mean that the flow is not accelerating in time (the discharge 
remains constant).  By uniform, we mean that the slope, size, shape, and 
roughness of the channel remain constant along its length.  If both of these are 
true, then the flow in the channel is not accelerating.  Recalling that Newton’s 
Second Law (ΣF = ma) states that the acceleration of a system times the mass of 
the system is equal to the sum of all forces acting on that system.  If our system 
is the water in a short reach of steady, uniform flow, the system undergoes no 
accelerations and the forces acting on it must be balanced (ΣF = 0). 
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These forces are the downslope component of the weight of water in the reach 
and the total boundary shear force τ0, which is resisting the flow.  Equating 
these, 

PLALg 0sin ταρ =  (1) 

where A is the cross-sectional area of the flow, L the length of the reach, and P 
is the wetted perimeter of the flow.  The units of (1) are those of force and we 
call this a force balance.  Solving (1) for τ0, we get 

gRSρτ =0  (2) 

where R is the hydraulic radius, given by A/P, and S is the bed slope, given by 
sinα.  (We actually use tanα, or rise over run, to measure bed slope, but at the 
slopes typical of most rivers, sinα essentially equals tanα.) 

Although (2) uses the hydraulic radius, it is often referred to as the “depth-slope 
product”.  For wide channels, depth h nearly equals R, but the radius is the 
correct term to use to estimate τ0 in nonaccelerating flows. 

1b.  Boundary stress in unsteady, nonuniform flow 
Now, we consider the more complex and realistic case in which the flow can 
accelerate in both time (discharge changes) and in space (flow is nonuniform).  
These accelerations are still balanced by the sum of the forces acting on the fluid 
in our reach, and Newton’s Second Law still provides our governing equation.  
To keep things manageable, we will simplify things a bit, but not so much that 
we lose the essence of the problem.  In particular, we will assume that the 
channel width b is constant and that the flow is predominantly in the 
downstream direction (basically we are avoiding big steps in the bed and swirly 
flow such as that behind obstructions and sudden changes in flow width).  
Neither of these assumptions is essential—the same governing equation emerges 
without them—but they allow for a much simpler derivation.  With these 
simplifications, a one-dimensional model will suffice; it is called the 1d form of 
the St Venant equations (aka shallow water equations).  First, we will simply 
present the equation and discuss its parts, and then we will do an abbreviated 
derivation, the goal of which is to reinforce the underlying physical concepts.   

To visualize the problem, we will use a reach with length ∆x and inclination α 
with sinα = S.  Flow goes from section 1, where the depth, cross-section area, 
pressure, and velocity are h1, A1, P1 and U1 to section 2 with h2, A2, P2, and U2.  
The mean cross-section area, wetted perimeter, hydraulic radius, and velocity 
for the reach are A, P, R, and U, respectively. 
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The 1d St. Venant equation is 
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First, we describe the parts of the equation.  The left side describes the fluid 
acceleration (the “ma” part of Newton’s Second Law).  The first term is the rate 
of change of velocity with respect to time (the rising limb of a flood wave, for 
example) and the second term describes the rate of change of velocity because 
the flow is accelerating from one end of our section to the other.  An essential 
point here is that accelerations in the fluid (whether in time or in space) are 
associated with forces.  This is what Newton’s Second Law tells us!  One way to 
visualize this is to think of flow through a nozzle on a garden hose.  The nozzle 
accelerates the flow and it requires a force to do so (if the nozzle were not 
tightly screwed on to the hose, it would fly off in the direction of the flow, 
indicating that the nozzle is accelerating the flow by applying a force in the 
direction opposite to the flow).  Similarly, if you gradually turn up the velcocity 
in the hose (by opening the valve), the force exerted on the nozzle (and by the 
nozzle on the fluid) will also gradually increase. 

On the right side of the equation are all the relevant forces (the ΣF part of 
Newton’s Second Law).  The first is the downslope component of the weight of 
the water in the reach—this is what drives the flow (water flows downhill)—and 
we included it in our derivation of the depth-slope product.  The second term is 
due to the pressure forces acting on the two ends of the reach.  For our case, 
fluid pressure is essentially hydrostatic, meaning that pressure increases linearly 
with depth below the water surface just as in a swimming pool: pressure P = ρgz  
where z is depth below the surface.  If the flow depth at one end of our 
nonuniform reach is different than at the other, then there will be an unbalanced 
pressure force that will play a role in accelerating the fluid in the reach.  The last 
term represents the boundary shear stress: the force exerted on the flow by the 
bed and banks (recall this from our steady uniform model above).  Because our 
interest is in the transport of sediment residing on the bed and banks, we are 
particularly interested in this last term. 

Now, lets try to breath some life into these terms with a simple derivation, using 
the reach sketched below.  We again write the governing equation in units of 
force, with accelerations on the left and forces on the right. 
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Again, the first term on the left is the “unsteady” term, describing changes in the 
flow in time (opening the valve) and the second two terms describe the 
momentum of the fluid leaving and entering the reach.  A change in this 
“momentum flux” will be associated with a force, just as in flow through a 
nozzle.  On the right are the pressures on the upstream and downstream ends of 
the reach, the downslope component of the fluid weight and the boundary shear 
force.  We need a little manipulation to get to the St Venant equation.  First we 
substitute Q = UA into the acceleration terms on the left, P = 1/2ρgh for the 
mean pressure on the right, sinα ≈ S, and A = bh 
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Now we divide by P∆x and use R = A/P and Q = UA again 
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the pressure term can be rewritten as 
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Using this in (6) and dividing by ρR gives 
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Finally, letting ∆x shrink to infinitesimal size and using the definition of a 
derivative, we recover (3) 
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The last thing we want to do is solve (3) for τ0, since that is what will drive the 
transport.   
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One way to interpret this result starts from the fact that, if the flow were steady 
and uniform (meaning that all the derivatives in (10) would be equal to zero), we 
recover our depth-slope product in (2).  If the flow is unsteady and/or 
nonuniform, the other three terms on the right of (10) come into play.  The 
question is, how big are these three terms compared to S?  Here, we arrive at a 
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very important point.  You could assume that these derivative terms are small.  
This is sometimes true and sometimes incorrect.  How would you know?  It is far 
preferable to evaluate the magnitude of these terms and determine explicitly 
whether neglecting the derivative terms is a reasonable thing to do.  The first 
case is an unsupported assumption; the second is based on an approximation, 
which allows a demonstration of whether the assumption is a reasonable one.  
The attached spreadsheet “NonuniformFlow.xls” illustrates the problem for the 
simple, but nontrivial case of steady flow that changes depth in the downstream 
direction.  The spreadsheet “Flood.xls” illustrates the interesting case in which a 
tributary flood causes the mainstem discharge to rapidly increase over a defined 
period of time, producing a wave of water in the mainstem.   

2.  The drag partition 
So far, we have discussed how to estimate the total boundary stress τ0 in a 
stream reach.  This gives us the total force acting on the wetted boundary of bed 
and banks.  Some of this force acts on the movable grains on the stream bed and 
thus drives the transport, but some of it also acts on other things: woody and 
other debris in the channel, bridge piers, channel bends, etc.  To estimate the 
sediment transport rate, we need to partition total stress τ0 into that part that acts 
only on the sediment grains.  We’ll call this the grain stress τ’ (this is also called 
the skin friction).  We have no direct way to estimate τ’, although there are some 
useful approximate approaches.  We will develop one approach here, based on 
the Manning Equation 

n
RSU

3/2
=  (11) 

where n is the Manning roughness.  Typical values of n for natural streams are 
in the range 0.03 to 0.08, although larger values are observed for very rough or 
very bendy channels, particularly when they are clogged with vegetation. 

A number of factors contribute to the boundary roughness and, therefore, to the 
magnitude of n.  One of these (the one we are interested in) is the bed grain size.  
You might reason (correctly) that larger grains would be hydraulically rougher 
than smaller grains.  By (11), that means that, for the same U and S, a bed with 
coarser sediment with have a larger depth.  An approximate relation between n 
and a characteristic grain size of the bed material, often referred to as the 
Strickler relation, is 

6/1040.0 Dn =  (12) 

for D in m, or 

6/1013.0 Dn =  (13) 

for D in mm.   
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Notice that Manning’s equation contains both R and S, suggesting that we might 
be able to pull τ0 out of the deal via the depth-slope product (in fact, that is just 
what flow resistance equations are all about: a relation between velocity, flow 
geometry, boundary roughness, and τ0).  If we multiply (11) by (ρg)2/3S1/6 and 
rearrange, we get 

3/26/13/2 )()( gRSnUSg ρρ =  (14) 

Raising all this to the 3/2 power gives 

( ) 0
2/34/1 τρ =nUgS  (15) 

Now here is the tricky part.  Suppose we insert the Strickler definition of n into 
(15).  Recalling that other factors also contribute to n, the Strickler n should be 
smaller than the total n for the channel.  By using the Strickler n in (15), we are 
essentially calculating the shear stress due to the bed grains only, which is the 
approximation of τ’ that we are after.  Using (13) in (15), we get 

( ) ( )013.0 2/34/12/3 τρ =USDg '  (16) 

Now, we have to face up to the choice of a characteristic grain size D.  We 
haven’t discussed the role of bed grain size in roughness yet, but hopefully it 
makes sense that it would be the larger sizes in the bed that would tend to 
dominate the roughness.  For example, D90 and D84 are often used (these are 
the grain sizes for which 90% or 84% of the bed material is finer).  We will use 
2D65, based on field and lab observations, although it is difficult to make a 
strong case for any particular value of D.  Fortunately, the choice ends up not 
making a big difference (because D is found in (16) raised to the power ¼). 
Substituting D=2D65 in (16) and using ρ = 1000 kg/m3 and g = 9.81 m/s2, we 
get 
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( ) 2/34/1
6517' USD=τ  (17) 

for τ’ in Pa, D65 in mm, and U in m/s.  We see that τ’ depends mostly on the 
flow velocity (meaning that it depends on Q and all the factors—channel size, 
shape, slope—that relate Q and U) and, to a lesser extent, on S and D65. 

3.  Spatial variability 
Recall that τ rarely exceeds τc by more than about a factor of two in most coarse 
bedded streams.  This means that our transport function (e.g. Meyer-Peter & 
Muller) will be very steep and nonlinear for most flows for which we might 
wish to estimate transport rate.  Recall, also, that the local shear stress τl can also 
vary considerably across and along a stream reach.  This is a problem.  If the 
transport function were linear, we could calculate an average value of τ’ and 
then use that in our transport formula.  Because the transport function is strongly 
nonlinear, however, this will produce errors that can be significant.  Basically, 
the rate of transport in areas where τ’ is greater than the mean will be much 
larger than the rate transport in areas where τ’ is smaller than the mean.  A 
simple case would be one in which the mean τ’ is less than τc, indicating that no 
transport should occur.  But even if the mean τ’ < τc, there can still be locations 
where τl > τc.  Thus, the mean τ’ indicates no transport when, in fact, there will 
be transport going on!  The attached spreadsheet “variable stresses.xls” 
calculates transport rates using mean τ’ and using an estimate of τl.  The case is 
for a simple (but illustrative) channel section divided into two equal regions of 
different depth.   

The steep nonlinear transport function, combined with the spatial variability in 
both τ and D indicate that transport rate is really a local kind of thing.  At a 
given flow, some places on the bed might have little or no transport going on 
while other places may have very active transport.  So, if you want to fully 
understand the transport, you will need to measure τl.  In a research context, you 
might be interested in measuring both τl and qs across a channel section.  A 
practical interest in τl will arise when if wish to know the transport rate, or 
perhaps just the likelihood of entrainment, over particular locations on the bed, 
such as over salmonid redds. 

We cannot measure τl directly and, instead, use measurements of velocity in the 
flow directly above the point of interest on the bed.  Generally, we take 
advantage of the fact that the flow velocity (here we are talking about the 
velocity at a point, which we will designate u in order to distinguish it from the 
section-averaged velocity U that we have already been discussing) varies 
logarithmically with height z above the bed.  We represent this as 
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where u
*
 = (τ/ρ)1/2 is called the shear velocity and z0 is a bed roughness length 

that corresponds to the elevation where u goes to zero.  Field observations 
indicate that z0 ≈ 0.1D90.  It turns out the constant 2.5 is quite general and holds 
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for a wide range of turbulent flows, including pipe flow as well as open-channel 
flow.  Strictly speaking, (18) only holds in a region of the flow that is both 
somewhat above the bed surface (say, z > 3D90) and well below the water 
surface (say, z < 0.2h).  This indicates that flows that are shallow compared to 
their bed material (h/D90 < 15 by the rules just given) will have no “log layer”.  
But, for flows that are deeper than this and are approximately steady and 
uniform, it turns out that (18) applies reasonably well throughout the entire flow 
depth.  This motivates consideration of the depth-averaged version of (18) 
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where Ul is the depth-averaged velocity, using the subscript l to distinguish it 
from the section-averaged velocity U, and e is the base of the natural logarithms.   

We can use (18) or (19) to estimate u
*
 from velocity observations.  The most 

common approach is to measure u at a number of different elevations above the 
bed.  We then fit a straight line to the observed u as a function of ln(z).   If we 
rewrite (18) as 

)ln(5.2)ln(5.2 0** zuzuu −=  (20) 

we see that the slope of this line σ = 2.5u
*
.  Thus, τl = ρ(σ/2.5)2 (using the 

definition of u
*
).  We could also estimate u

*
 by making a single observation of u 

at some near-bed z.  In this case, we have to provide an independent estimate of 
z0 (e.g. z0 = 0.1D90).  Finally, we could determine Ul from a number of (u, z) 
observations and, with an independent estimate z0, estimate u

*
 using (19).  

Wilcock (WRR, 1996) used replicate field measurements to evaluate the 
precision of each of these approaches.  The velocity profile approach offered the 
least precision of the three methods, although it has the important advantage that 
an independent estimate z0 is not required.  The estimate based on (19) offered 
the highest precision (because Ul and h can be measured more accurately than 
the value of u at any particular z), but requires an independent estimate of z0 as 
well as the assumption that (18) holds throughout the flow depth (although the 
latter assumption can be evaluated based on the observations used to determine 
Ul).  Using a single near-bed observation of (u, z) offers precision intermediate 
to the other methods.  Although requiring an independent estimate z0, this last 
method depends on the existence of a log layer only very close to the bed, 
making it applicable to a wider range of flows than the other two methods. 
Because it requires only a single measurement, it can be done quickly. 

Modern acoustic velocity probes, which use the Doppler effect to determine 
velocities throughout the flow, offer the possibility of determining τl in an entire 
reach with far less effort than that required to determine local velocities with 
traditional current meters.  These newer probes generally require flow depths 
larger than those found in many coarse-bedded streams, however, and, because 
they are expensive and fragile, are rarely used in flows producing large transport 
rates in gravel-bed rivers. 
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An alternative approach is to estimate τl it using a flow model.  If the 
topography and roughness throughout a reach is known, a depth-averaged two-
dimensional flow model (similar to eqn (3) with additional terms for the lateral 
variation in U and h and cross-stream velocity V) can provide accurate estimates 
of τl throughout the reach.  Unfortunately, the necessary detail of topography 
and roughness throughout a reach is difficult to collect and rarely available. 

4.  Transport Model Based on Q: Part II 
Recall that a model using Q to predict transport rates would be most useful, 
since many transport problems are ultimately defines in terms of Q and Qs.  Lets 
return to this problem, now that we have an idea of how to determine the grain 
stress τ’.  The idea is to evaluate if a transport model in the form 

β
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can be general. 

To start, lets use a simplified transport model 

( )3** τ∝q  (22) 

which approximates the transport rates over the 
typical range of interest in gravel-bed streams.  
{(22) is known as the Einstein-Brown model) 
For our purposes, all we need is  

3'τ∝sq  (23) 

and, forming a ratio with the same relation 
defined at the reference value we get 
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Now, we need to relate τ’ to Q.  We get part of 
the way there using our Manning-Strickler drag 
partition 

2/34/1
65)(17' USD=τ  (25) 

 

1E-05

0.0001

0.001

01

0.1

1

10

0.01 0.1 1

0.

M-P&M
2t*c
(t*) 3̂

q*

τ
τ *

 

 

Writing (25) a second time for τ’ at some reference level τ’r, and forming a ratio 
between the two, we get 
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Inserting this expression into (24), we get 

5.4
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So we see that the ratio of transport at two different velocities in a reach may be 
expressed as a constant power of those two velocities, assuming that the slope 
and bed grain size do not change between the two flows (otherwise S and D65 
would not cancel in going from (25) to (26).  This also assumes that the width of 
the portion of the channel producing bed-material transport remains constant as 
the flow changes, which often is not a bad assumption. 

Now, we have to relate U to Q.  Fortunately, there have been many 
measurements of this, which can be summed up in terms of the hydraulic 
geometry.  There are actually two forms of the hydraulic geometry, one for a 
cross section (“at-a-station hydraulic geometry”) and another for different 
sections and different rivers (“downstream hydraulic geometry”).  Here, we use 
the at-a-station form.  In short, the idea is that the variation of channel width B, 
depth h, and mean velocity U are assumed to follow power relations with Q: 

m

f

b

kQU

cQh

aQB

=

=

=

 (28 a-c) 

Because Q = BhU, we know that  

1 and 1 =++= mfback  (29) 

The plots below show values of the exponents b, f and m for parabolic and 
trapezoidal channels and their range for many channels in a range of 
environments.  Because b + f + m = 1, these results can be plotted accurately in a 
ternary diagram. 
It is the last of the three hydraulic geometry relations (28c) that we need to 
finish our problem.  Inserting (28-c) into (27), we get 
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The compiled record suggests that the exponent m varies between about 0.3 and 
0.8, meaning that our exponent β varies between 1.4 and 3.6.  Higher values of β 
are also observed, particular in steep mountain streams, which can have very 
small transport rates, such that the exponent 3 in the Einstein-Brown formula 
underestimates the actual variation of q* with τ*.   
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We will return to (28-c) in the fourth lecture.  There are relatively simple ways 
to determine the exponent m for a channel, and we will exploit this in 
developing a simple method of estimating sediment transport rates. 

 

5. Summary 
For the purposes of estimating transport rates, we can estimate the total 
boundary stress τ0, or we can estimate the local boundary stress τl.  With the 
former, we must perform a drag partition to determine the grain stress τ’, the 
portion of τ0 acting on the grains and driving the transport.  Because τl varies 
across the bed, the transport rate calculated using a mean value of τ’ will not 
equal the sum of the local transport rates calculated using τl.  Nonetheless, mean 
τ’ may provide as a useful index of flow strength for the purpose of estimating 
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transport rates.  Estimates of τl are appropriate when we are interested in 
transport at a particular location (e.g. over spawning gravels).  If we want to 
estimate the total transport rate through a section, we would have to measure τl 
throughout the section or find a way to index τl to τ’. 

Take-Home Tools 
The St.Venant equation (3) provides a basis for determining whether the total 
boundary stress τ0 can be estimated using the depth-slope product ρgRS. 

To determine transport rates, the grain stress τ’ portion of τ0 must be estimated.  
Equation (17) provides a simple means of estimating τ’. 

Local stresses can be estimated from velocity measurements at particular 
stations above the bed.  Three different methods provide a tradeoff between 
precision and the range of applicable conditions. 


