
Lecture Notes - Sediment Transport – The Sediment Problem 

At the end of the first lecture, we noted that our steep, nonlinear transport model 
depended on τ*, which is the ratio of the bed shear stress τ to the weight of the 
sediment grains per unit bed area.  The key variable governing the sediment 
weight is grain size D.  We know that the range of grain sizes in a typical stream 
bed is very large and that these sizes may be sorted spatially and vertically and 
that this sorting might vary with time and with flow.  To estimate transport rates, 
we have to come to terms with how to represent grain size.  But, recall that when 
we solved our example transport model, Meyer-Peter & Müller, for qs (eqn. 19 
in Lecture 1), we found that the relation did not contain D explicitly.  So, am I 
just making this stuff up when I claim that D is important?  No, because M-PM 
(and other transport models) contain D implicitly because grain size has a 
dominant effect on the critical stress τc.  So, our first task in this lecture is 
determining τc.  Along the way, we will have to think about how many sizes we 
wish to be concerned with when we are dealing with a stream bed containing a 
very wide range of sizes.  For whatever choice of size ranges, we will need a 
means of estimating τc or its surrogate τr.   

It turns out the absence of D is a key feature of M-PM and other general 
transport models.  Not including D explicitly in this model (and others we will 
develop) facilitates development of a general transport model that applies to 
sediments of any grain size, as well as to different grain sizes mixed within the 
same sediment. 

1. The Difference Between τc and τr 

So far, we have been introduced the critical shear stress τc and the reference 
shear stress τr.  It can be easy to confuse them.  The first, τc, is more of an 
abstract concept than something that can be readily measured.  Nominally, it is 
the value of τ at which transport begins.  Because it is a boundary, it is 
impossible to measure directly.  If you observe grains moving, τ > τc and if no 
grains are moving, τ < τc.  But that begs the question of how long one should 
watch the bed, and how much of the bed one should watch, in order to determine 
whether grains are moving or not.  When the flow is turbulent (meaning that τ at 
any point is fluctuating in time), the answers to these questions are not easy to 
answer.  If our goal is to predict transport rate, the practical alternative, 
introduced in the first lecture, is to use the reference shear stress τr, which is the 
value of τ associated with a very small, predetermined transport rate.  In the first 
lecture, we set this transport rate as W* = 0.002.  With measured transport rates 
over a range of small τ, it is a straightforward thing to determine τr.  We will do 
this in the next lecture.  By its definition, τr is associated with a small amount of 
transport, so τr should be slightly larger than τc.   

2.  The Different Applications of Critical Shear Stress 

Applications of the general concept of incipient motion can be divided into two 
broad categories.  The first is that τc(or τr) serves as an intercept, or threshold, in 
a sediment transport relation (e.g. in the Meyer-Peter & Muller relation).  The 
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presence of τc (or τr) in transport relations introduces the characteristic concave-
down trend.  In this case, we are not really worried about the entrainment of any 
grain in particular; we just need to know the flow at which transport begins.  
This is the purpose for which the reference shear stress τr was developed.  In the 
second case, we are interested in the entrainment of individual grains.  For 
example, we might be interested in flushing fines from the subsurface of a 
gravel-bed river in order to improve spawning habitat.  Or we might be 
interested in the stability of bed and bank material in cases where channel 
stability depends on the material not moving at all.  In this case, we are 
interested in the entrainment of individual grains or, more generally, the 
proportion of grains on the bed surface that are entrained.  We might ask “At 
what discharge do 90% of the surface grains become entrained, thereby 
providing access to the subsurface and some flushing action?”  Or, “At what 
discharge does 1% of the surface grains become entrained, thereby indicating 
that our rip-rap channel is beginning to fall apart?”   

The difference between these two applications of incipient motion can be 
illustrated with their characteristic field methods.  As an intercept in a transport 
relation, we would determine τr by measuring transport rate, and determining 
the value of τ at which the transport rate is equal to a small reference value.  We 
discussed this in the first lecture and will return to it in the next.  In contrast, the 
simplest way to measure actual bed entrainment is to use tracer grains.  These 
might be painted rocks that are placed on the bed surface (generally, we try to 
replace an in situ grain with a painted grain of the same size, to provide a more 
realistic indication of the flow producing movement).  If the streambed (or a 
portion of it is dry), it is even easier to just spay paint the bed itself, although 
this may raise aesthetic or legal objections.  After a flow has passed over the 
bed, you return to see how many painted rocks remain.  Tracers provide an 
excellent (and easy) way of measuring entrainment (did the grains move at all?), 
but it is difficult to determine transport rates from tracers, because a transport 
estimate would require relocating a very large fraction of the tracers and 
determining how far they moved.  This helps to illustrate the difference between 
the two incipient motion concepts.  Entraiment of (say) 50% of the grains on the 
bed does not tell you what the transport rates were.  And measurement of the 
transport rate does not tell you how many of the surface grains were entrained.  
A significant transport rate could be produced by a few hyperactive grains, 
while most of the grains on the bed surface don’t move at all. 

A related concept is partial transport, which is defined as the condition in which 
only a portion of the grains on the bed surface ever move over the duration of a 
transport event.  We could define partial transport in terms of all surface grains 
(e.g. 50% of the surface grains move over the transport event) or on a size –by-
size basis (e.g. 90% of the 2-8mm grains move, 50% of the 8-32mm grains 
move, and only 5% of the >32mm grains move over the transport event).  The 
scope and nature of partial transport was defined in the laboratory (Wilcock and 
McaArdell, 1997) and has been show to represent transport conditions in the 
field, even under large flow events (Haschenburger and Wilcock, 2003).  
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Beyond its importance in terms of defining bed stability and subsurface flushing, 
partial transport would appear to have important consequences for defining 
frequency and intensity of benthic disturbance in the aquatic ecosystem. 

3. Basic Critical Shear Stress 

The Shields Curve 
The dimensional analysis we did in the first lecture led to the result that 
dimensionless transport rate depended on four dimensionless variables, the 
Shields Number τ*, a dimensionless viscosity S*, the relative density s, and the 
relative flow depth D/h.  To remind you 
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If we simply argue that the variables that determine transport rate are the same 
as those that determine whether grains are moving or not, then a dimensional 
analysis of the incipient motion problem is nearly the same as one for the 
transport problem: we just replace qs with a “motion/no motion” binary variable.  
Incipient grain motion should be described by some relation between τ*c, S*, s, 
and D/h.  If, as we did before, we limit ourselves to typical values of s 
(2.65±5%) and flow depths more than a few times D, we end up with a relation 
between τ*c and  S*.  For unisize sediments, this is represented by the widely 
known Shields diagram.   
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The trend on the diagram can be represented by the function 
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which allows τ*c to be determined without having to look values up on the 
diagram.  The variation of τ*c with S* demonstrates the effect of fluid viscosity 
on grain movement, as we alluded to in the first lecture.  We note that τ*c 
approaches a constant value of about 0.045 for S* > 10,000.  This is of particular 
interest for us, because we are interested in coarse-bedded streams.  Using the 
definition of τ*c, we see that τ*c = 0.045 corresponds to 

gDsc ρτ )1(045.0 −=
 (3) 

or, using s= 2.65 and  
ρg = 9810 kg m-2 s-2,  

Dc 73.0=τ  (4) 

for τc in Pa and D in mm.  This linear 
trend is clear when the Shields diagram is 
plotted as τc in Pa and D in mm 
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What if the bed material contains a range of sizes?  For sed
too widely sorted with a unimodal size distribution (e.g. a mixture of medium 
sand to pea gravel with D50 around 2mm, or a gravel with D50 around 32mm 
and little sand, it turns out hat all of the different sizes in the mixture have just
about the same value of τc.  This is a key element of the condition of “equal 
mobility”, which was hotly debated 10-15 years ago.  Basically, what happen
that the tendency of larger grains to be harder to move (as reflected in. (3) and 
the dimensional Shields curve above) is almost exactly counterbalanced by the 
effect of mixing the different sizes together in the same sediment.  When placed
in a mixture, smaller grains will be harder to move than when in a unisize bed 
and larger grains will be easier to move.  For the equal mobility case, one 
practical question remains: if all sizes have the same τc, what is it?  It turns
that the Shields curve provides a pretty good indication of τc if the median grain
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size D50 is used for D.  Thus, you can approximate τc for the entire mixture, as 
well as for individual size fractions, using the Shields Diagram and D = D50. 

 
 
 

 

 

 

 

 

 6

 

 

 

 

 

 

 
6

 

 

 

0
20
40

0

0
20
40
60

0
20
40

0

Grain Size (mm)

Pe
rc

en
t i

n 
Si

ze
 F

ra
ct

io
n

0
20
40
60

0
20
40
60

0
20
40
60

0
2
4
6
8

10
12

0.1

1

0.1 1 10 100

Unisize

Grain Size (mm)

R
ef

er
en

ce
 S

he
ar

 S
tre

ss
 (P

a) 10

 

Reference Shear Stress for different unimodal and bimodal sediments 
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The Effect of Sand 
While investigating the incipient motion conditions of a wide range of 
sediments, it became apparent that a group of sediments did not fit the general 
pattern.  These were gravel beds with more than a few percent sand.  These 
sediments typically have a prominent mode in the gravel size range and another 
mode in the sand size range and we call the size distribution bimodal. What was 
observed is that τc for the sand fractions tended to be much smaller than for the 

gravel fractions (i.e. the sand begins moving at smaller flows than the gravel, 
violating the equal mobility condition) and that τc for the gravel fractions tended 

to be smaller in sandy mixtures than in mixtures with little sand.  The sand 
content affected τc for both the sand and gravel fractions. 

The bimodal nature of the size distributions and the previous observations that τc 

did not vary much within unimodal mixtures that were predominantly all sand or 
all gravel suggested that perhaps the problem could be solved by considering the 
mixtures as being composed of two fractions: sand and gravel.  This had the 
possibility of not only allowing each fraction to have a different τc but also 
would allow the effect of sand content on τc of the gravel to be explained in 

terms of the proportion of sand in the bed.  It turns out that such a two fraction 
approach for describing the bed material size distribution captures these points 
very well as shown by the plots of τ* for the reference shear stress of the gravel 
and sand fractions for five different lab sediments and four different field cases 
(Wilcock, 1997; Wilcock and Kenworthy, 2002). 

Although we will talk in the next lecture about how this result and its associated 
transport model were developed, its useful to discuss the basic trends to 
complete our discussion of incipient motion.  The trends follow a pattern that 
fits nicely with our general understanding of transport.  For the gravel, τ*rg 

approaches a standard unisize value of 0.045 as the sand content goes to zero.  
As sand content becomes large, τ*rg approaches a minimum of about 0.01, a 

value observed in different kinds of lab experiments.  Most striking is the 
decrease in τ*rg over a range in sand content between about 10% and 30%.  

Over this range, the bed undergoes a transition from being framework supported 
(meaning that the bed consists of a framework of gravel clasts) to being matrix 
supported (meaning that the coarse grains are “floating: in a matrix of sand).  
This change in bed composition is clearly related to an associated change in 
transport behavior.   
The trend in τ*rs is also clear, but more complex.  As sand content approaches 1, 
τ*rsapproaches a standard unisize value, just as for the gravel.  As sand content 

approaches zero, we can expect that this small amount of sand will settle down 
among the gravel grains and the sand entrainment will only occur when the 
gravel moves.  Thus, τrs = τrg.  By the definitions of τ*rs and τ*rg, τ*rs = 
τ*rg(Dg/Ds), so τ*rs will depend not only on τ*rg, but also (Dg/Ds).  The 
multiple lines in the lower diagram are for different values of (Dg/Ds). 

Repeating a point I am making throughout these lectures: the relation between 
transport rate and τ is very steep and nonlinear over the typical range observed 
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in gravel-bed rivers.  This means that getting τc correct is essential for an 
accurate prediction of transport rate in terms of excess shear stress (τ - τc or  
τ/τc).  Alternatively, uncertainty in τc can take its share of the blame for the 
large error typically associated with predicted transport rates.  And, importantly, 
if something (like the sand content of the bed) causes τc to change, the effect on 
transport rate will be very large.  We will return to this in the next lecture. 
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Variation of reference Shields Number for (a) gravel and (b) sand fractions of 
five laboratory sediments and four field cases. 
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5.  A two-fraction approach to transport in gravel-bed streams 

Although the range of grain sizes in a gravel-bed river is very large, and there 
are now transport models capable of predicting the transport rate of many finely-
divided size fractions (we will consider one in the next lecture), such predictions 
require detailed information on the bed composition, which is rarely available.  
A two-fraction approach, as suggested by the difference in behavior between 
fine and coarse bed material load, provides an approach that has both conceptual 
and practical advantages.   Its conceptual underpinnings derive from the 
essential simplification of equal mobility, revised to state that the sizes within 
two separate, but related fractions—sand and gravel—are equally mobile.  A 
two-fraction estimate allows sand and gravel to move at different rates, thereby 
permitting change in bed grain size due to changes in the relative proportion of 
sand and gravel, if not due to the changes in the representative grain size of 
either fraction.  This provides a means of predicting the variation in the fines 
content of the bed, which may often be more variable than that of the coarse 
fraction, and whose passage, intrusion, or removal may be a specific 
environmental or engineering objective.   

A two-fraction approach facilitates developing an estimate of the grain-size of 
an entire river reach.  Areas with similar fines content may be mapped and 
combined to give a weighted average proportion of sand for the reach giving an 
integral measure of grain size with reasonable effort.  This provides a superior 
description of the bed compared to an unsupported extrapolation from detailed 
sampling at only a few locations.   

A two fraction approach provides a ready means of representing the interaction 
between the fine and coarse components of the bed material.  Laboratory studies 
(Wilcock, Kenworthy, and Crowe, 2001; Curran and Wilcock, in review) show 
that the addition of sand to a gravel bed or to the sediment supply can increase 
gravel transport rates by orders of magnitude (this is indicated by the four-fold 
decrease in τ*rg in the two-fraction curve above).  This effect is not captured in 
previous transport models.  Because there are a variety of situations in which the 
supply of fine bed material can be increased  (e.g. fire, reservoir flushing, dam 
removal, urbanization), an accurate and practical basis for addressing these 
situations is clearly needed. 

In the next lecture, we will discuss more fully how sand content affects transport 
rates and how the incipient motion result discussed here was developed in the 
context of developing a two-fraction transport model (Wilcock, 1998; Wilcock 
and Kenworthy; 2002).  In the lecture after that, we will exploit the advantages 
of the two-fraction concept in coming up with a practical approach to estimating 
transport rates in gravel-bed streams. (Wilcock, 2001). 


