Sediment Transport IV

Mixed-Size Sediment Transport

1. Partial Transport: frequency & implications
using field and laboratory evidence

2. Armor layer persistence
investigated using a surface-based transport
model.

3. Effect of adding sand to a gravel-bed river
leading to a two-fraction transport model
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The Bed of Many Colors
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1. Bed Entrainment & Partial
Transport




Partial Transport

* Some grains remain immobile over the
course of a transport event

* Implications for benthic disturbance, bed
dynamics & subsurface flushing

 but occurrence, prevalence undocumented
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Proportion of Larvae Recovered in Seed Section(s)
Series B
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Field Observations of Partial Transport (1)
Carnation Ck, BC

3000 magnetically
tagged stones

Judy
Haschenburger,
U. Auckland
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HASCHENBURGER AND WILCOCK: TRANSPORT IN A GRAVEL BED CHANNEL
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Figure 6. Proportional bed activity as a function of scaled peak discharge: (a) upper A area, (b) upper B
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Figure 7. Active proportion of surface grains as a function of grain size; (a) upper A area, (b) upper B
area, (¢) upper D area, and (d) lower E area.




CHURCH AND HASSAN: MOBILITY OF BED MATERIAL IN HARRIS CREEK
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Figure 6. Percent of moved tracers as a function of grain size for three freshet seasons in Harris Creek.
Shading denotes the range in the median size of the surface and subsurface material.




* Bed mobilization increases consistently with flow and grain size
e Substantial transport occurs over a partially mobile bed
* Partial transport persists from year to year

complete disturbance not an annual event
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2. Bed surface composition: Armoring & the
problem of predlctlng transport rates
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The armor problem

* We can measure the bed surface size at low
flow, but not at flows moving sediment, so

* We don’t know what the bed surface looks
like at the flows that create i1t

* Does the armor layer stay or go
during floods’
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To address the armor problem, we have to
tackle the transport problem

* Transport rates depend on transport of
grains available for transport on bed surface

* But nearly all transport data provide
composition of the bed subsurface, not
surface!

* This means that the resulting transport
models must somehow 1mplicitly account
for surface sorting (armoring)

NOT a good way to build a general model



Transport Modeling Basics - 1

Given fully rough flow with boundary stress z,
sediment of mean size D, , with individual fractions of
size D; and proportion f; Transport rate g, depends on

qbl:fn(ﬁa Dla Dm, T, Sed)

where sed = other sediment properties. We search a
transport model of form

qp; where 7, 1s a
1 = fm(7,7,) reference value of 7
[ near the onset of

7, = fny (D, ,D;/ D, ,sed) sediment motion

But, what size distribution should we use for f.?

ans. surface



There are essentially no surface-based transport
observations, so we made some

» Built five sediments, adding sand to gravel
* Sand: 0.5 — 2.0 mm

e Gravel: 2.0 — 64 mm

e Sand Content: 6%, 14%., 21%., 27%. 34%

* 9 or 10 runs with each sediment, over a wide
range of transport rates

* Depth & width held constant, primary variables
are sand content & flow strength

* Every run: measure flow, transport rate & grain
size, and bed surface grain size
(point counts of photos of colored grains)
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Transport Modeling Basics - 2

To develop a general .
I __

transport model, we o fm(z,7,;)

nondimensionalize

~,

in the form of a similarity collapse Wl* = fn, (Tj

T..
ril
W (S l)g le
where 3/7
z’(T/ P ) The Point:
F; surface proportion; The transport
g gravity; function does not
p water density; contain grain size!

s sed spec. gr.



Sediment = J14

Sediment = J14




Sediment = J14
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Surface-based transport model can be used
in both forward & inverse forms

Forward: predict transport rate & grain size
as function of 7 and bed surface grain size

* Inverse: predict 7and bed surface grain size
as function of transport rate & grain size

Don’t try this with a subsurface —based model!

The inverse model provides a useful tool for
considering armor persistence — because we
do have good transport data from the field
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At “reach” and “storm?” scales
of space and time

* Armor layer grain size appears to be persistent — a
real advantage for predicting roughness &
transport during floods:

a low flow measurement of bed composition may
suffice (unless dunes develop)

* Increasing transport grain size balances change in
grain mobility to produce a constant bed surface

e A SBTM needed to model transients



3. How does increasing the supply of fines
(sand) affect the gravel transport?

Previous Experiments

» Jackson & Beschta (1984)
» Tkeda & Iseya (1988)

- Adding sand increases gavel mobility.
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Sand content has a huge effect
on gravel transport rates —

How to generalize?
« Model two fractions: Sand & Gravel

* Use a similarity collapse

(= 1Dggp,

* Use one scaling parameter,

1.5
the reference shear stress 7, (2'0 /p )
(a surrogate for the critical
shear stress for incipient T/,

motion)
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Include field data to broaden model basis
*Oak Creek, Or (Milhous, Parker et al.)

*Goodwin Creek MS (Kuhnle)

*East Fork River WY (Emmett & Leopold)

«Jacoby Creek CA (Lisle)



(a) Lab Data
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Model collapse reasonably good; leaving a
single similarity parameter to explain: the
reference shear stress, 7,

It provides a clean description — and prediction
— of the effect of sand on gravel transport
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The point?

Adding sand can have a huge effect on gravel
transport rates

& there are lots of reasons why sand supply to a
gravel-bed river might be increased

fire, urbanization, reservoir flushing, dam removal

& a two fraction approach captures this effect in a
tractable framework
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Summary

Armor layers persist

May be only partially
active 1n a typical flood

T sand supply T T mobility
of coarse grains

Surface-based model
available for predicting
transient transport

2-fraction model available
as a robust alternative
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