Publication(s) with 2007-01 dataset

<2009-04>
Bowles, C. J. (2009), Testing classification methods and identifying marine terraces using northern California LiDAR datasets, Masters of Science, Univ. California, Davis.
<2009-06>
Dong, P. (2009), Characterization of individual tree crowns using three-dimensional shape signatures derived from LiDAR data. International Journal of Remote Sensing. Vol. 30, No. 24, pp. 6621-6628. 10.1080/01431160903140761
<2009-13>
Manga, M. and Rowland, J.C. (2009), Response of Alum Rock springs to the October 30, 2007 Alum Rock earthquake and implications for the origin of increased discharge after earthquakes, Geofluids (2009) 9, 237?250 doi: 10.1111/j.1468-8123.2009.00250.x
<2009-16>
Prentice, C. S., C. J. Crosby, C. S. Whitehill, J. R. Arrowsmith, K. P. Furlong, and D. A. Phillips (2009), Illuminating Northern California's Active Faults, Eos Trans. AGU, 90, 55.
<2010-08>
DeLong, S.B., Hilley, G.E., Rymer, M.J., Prentice, C. (2010), Fault zone structure from topography: Signatures of en echelon fault slip at Mustang Ridge on the San Andreas Fault, Monterey County, California. Tectonics, 29(5), p.TC5003. DOI: 10.1029/2010TC002673
<2010-09>
Dong, P. L. (2010), Sensitivity of LiDAR-derived three-dimensional shape signatures for individual tree crowns: a simulation study: Remote Sensing Letters, v. 1, no. 3, p. 159-167. DOI: 10.1080/01431161003631550
<2011-02>
Bernardin, Tony; Cowgill, Eric; Kreylos, Oliver; Bowles, Christopher; Gold,Peter; Hamann, Bernd; Kellogg, Louise (2011), Crusta: A new virtual globe for real-time visualization of sub-meter digital topography at planetary scales. Comput.Geosci., 2011, 37, 1, 75-85. DOI: 10.1016/j.cageo.2010.02.006
<2012-06>
DeLong, S. B., Prentice, C. S., Hilley, G. E. and Ebert, Y. (2012), Multitemporal ALSM change detection, sediment delivery, and process mapping at an active earthflow. Earth Surf. Process. Landforms, 37: 262?272. doi: 10.1002/esp.2234
<2013-08>
Glennie, C.L., W.E. Carter, R.L. Shrestha, and W.E. Dietrich (2013), Geodetic imaging with airborne LiDAR; the Earth's surface revealed, Reports on Progress in Physics, 76(8), 086801 (24pp). doi: 10.1088/0034-4885/76/8/086801
<2013-38>
Wrucke, C.T., R.T. Wrucke, and T. Sayre (2013), Reassessment of the 1906 San Andreas Fault Rupture in Portola Valley, California, from Synthesis of Lidar and Historical Data, Bulletin of the Seismological Society of America, 103(4), 2404-2423.
<2014-49>
Streig, A., T. Dawson, and R. Weldon (2014), Paleoseismic evidence of the 1890 and 1838 earthquakes on the Santa Cruz Mountains section of the San Andreas fault, near Corralitos, California, Bulletin of the Seismological Society of America, 104(1), 285-300.
<2015-05>
Barchyn, T.E. and C.H. Hugenholtz (2015), Predictability of Due Activity in Real Dune Fields under Unidirectional Wind Regimes, Journal of Geophysical Research: Earth Surface, doi: 10.1002/2014JF003248
<2015-25>
Griffith, K.T., A.G. Ponette-Gonzalez, L.M. Curran, and K.C. Weathers (2015), Assessing the Influence of Topography and Canopy Structure on Douglas Fir Throughfall with LiDAR and Empirical Data in the Santa Cruz Mountains, USA, Environmental Monitoring and Assessment, doi: 10.1007/s10661-015-4486-6
<2016-13>
Hecker, S., V.E. Langenheim, R.A. Williams, C.S. Hitchcock, and S.B. DeLong (2016), Detailed Mapping and Rupture Implications of the 1 km Releasing Bend in the Rodgers Creek Fault at Santa Rosa, Northern California, Bulletin of the Seismological Society of America, 106(2), 575, doi: 10.1785/0120150152
<2017-86>
Robinson, S., W. Bohon, E. Kleber, J. Arrowsmith, and C. Crosby (2017), Applications of High-resolution Topography in Earth Science Education, Geosphere, 13(6), 1887-1900, doi: 10.1130/GES01236.1
<2018-12>
Stewart, N., Y. Gaudemer, I. Manighetti, L. Serreau, A. Vincendeau, S. Dominguez, L. Matteo, and J. Malavieille (2018), ¡°3D_Fault_Offsets,¡± a Matlab Code to Automatically Measure Lateral and Vertical Fault Offsets in Topographic Data: Application to San Andreas, Owens Valley, and Hope Faults, Journal of Geophysical Research: Solid Earth, 123, doi: 10.1002/2017JB014863
<2018-65>
Hecker, S. and C. Randolph Loar (2018), Map of Recently Active Traces of the Rodgers Creek Fault, Sonoma County, US Geological Survey Scientific Investigation Map 3410, 7 p., 1 sheet, doi: 10.3133/sim3410
<2019-44>
Sare, R., G. Hilley, and S. DeLong (2019), Regional-Scale Detection of Fault Scarps and Other Tectonic Landforms: Examples from Northern California, Journal of Geophysical Research: Solid Earth, 124(1), 1016-1035, doi: 10.1029/2018JB016886
<2019-65>
Girven, E. (2019), Statistical and Geospatial Analysis of InSAR Data for Characterization of Processes Controlling Motion of the Slow-moving Berkeley Landslides, Master¡¯s Thesis, State University of New York at Buffalo, http://hdl.handle.net/10477/80027
<2019-104>
Tang, S. and S. Tang (2019), 3D Surface Reconstruction of Trees Using a Region-based Active Contour Model, Proceedings of the International Conference on Image Processing, Computer Vision, and Pattern Recognition, 105-109
<2019-120>
Girven, E. (2019), Statistical and Geospatial Analysis of InSAR Data for Characterization for Processes Controlling Motion of the Slow-moving Berkeley Landslides, Master¡¯s Thesis, SUNY at Buffalo, http://hdl.handle.net/10477/80027
<2020-04>
Booth, A., J. McCarley, and J. Nelson (2020), Multi-year, Three-dimensional Landslide Surface Deformation from Repeat Lidar and Response to Precipitation: Mill Gulch Earthflow, California, Landslides, doi: 10.1007/s10346-020-01364-zs
<2020-77>
Li, B., H. Xie, X. Tong, Z. Zhang, and S. Liu (2020), Extracting Satellite Laser Altimetry Footprints with the Required Accuracy by Random Forest, IEEE Geoscience and Remote Sensing Letters, doi: 10.1109/LGRS.2020.2999201
<2020-101>
Sare, R. (2020), Applications of Large-Scale and High-Resolution Topographic Data in Tectonic Geomorphology, PhD Dissertation, Stanford University, http://purl.stanford.edu/dc801sx8291
<2020-102>
Scott, C., M. Bunds, M. Shirzaei, and N. Toke (2020), Creep along the Central San Andreas Fault from Surface Fractures, Topographic Differencing, and InSAR, Journal of Geophysical Research: Solid Earth, 125, doi: 10.1029/2020JB019762