Publication(s) with 2017-11 dataset
<2020-35>
Shah, S., M. Manzoor, and A. Bais (2020), Canopy Height Estimation at Landsat Resolution Using Convolutional Neural Networks, Machine Learning and Knowledge Extraction, 2(1), 23-36, doi: 10.3390/make2010003
<2021-57>
Chamberlain, C., A. Meador, and A. Thode (2021), Airborne Lidar Provides Reliable Estimates of Canopy Base Height and Canopy Bulk Density in Southwestern Ponderosa Pine Forests, Forest Ecology and Management, 481, doi: 10.1016/j.foreco.2020.118695
<2021-61>
Donager, J., T. Sankey, A. Meador, J. Sankey, and A. Springer (2021), Integrating Airborne and Mobile Lidar Data with UAV Photogrammetry for Rapid Assessment of Changing Forest Snow Depth and Cover, Science of Remote Sensing, 4, doi: 10.1016/j.srs.2021.100029
<2021-94>
O¡¯Donnell, F., J. Donager, T. Sankey, S. Lopez, and A. Springer (2021), Vegetation Structure Controls on Snow and Soil Moisture in Restored Ponderosa Pine Forests, Hydrological Processes, doi: 10.1002/hyp.14432
<2022-99>
Wu, Y., M. Sang, and W. Wang (2022), A Novel Ground Filtering Method for Point Clouds in a Forestry Area on Local Minimum Value and Machine Learning, Applied Sciences, 12, doi: 10.3390/app12189113