Publication(s) with 2005-08 dataset

<2006-03>
Toth, C., D. Grenjner-Brzezinska, and M. Belvis (2006), High-resolution airborne lidar/CCD mapping of San Andreas Fault, 3rd IAG / 12th FIG Symposium, Baden, May 22-24.
<2007-10>
Oskin, M.E., Le, K. & Strane, M.D. (2007), Quantifying fault-zone activity in arid environments with high-resolution topography. Geophysical Research Letters, 34(23). DOI: 10.1029/2007GL031295
<2007-13>
Shan, S, M. Bevis, E. Kendrick, G. L. Mader, D. Raleigh, K. Hudnut, M. Sartori, and D. Phillips (2007), Kinematic GPS solutions for aircraft trajectories: Identifying and minimizing systematic height errors associated with atmospheric propagation delays, Geophy, Res. Let., Vol. 34. L23S07,doi:10.1029/2007GL030889
<2009-01>
Arrowsmith, J.R.; Zielke, O. (2009), Tectonic geomorphology of the San Andreas Fault zone from high resolution topography: an example from the Cholame segment. Geomorphology, 113, 1-2, 70-81, doi:10.1016/j.geomorph.2009.01.002
<2009-22>
Wechsler, N., Rockwell, T.K. & Ben-Zion, Y. (2009), Application of high resolution DEM data to detect rock damage from geomorphic signals along the central San Jacinto Fault. Geomorphology, 113(1-2), pp.82?96. doi:10.1016/j.geomorph.2009.06.007
<2010-04>
Behr, W.M., Rood, D.H, Fletcher, K.E., Guzman, N., Finkel, R., Hanks, T.C., Hudnut, K.W., Kendrick, K.J., Platt, J.P,m Sharp, W.D., Weldon, R.J., Yule, J.D. (2010), Uncertainties in slip-rate estimates for the Mission Creek strand of the southern San Andreas fault at Biskra Palms Oasis, southern California. Geological Society of America Bulletin, 122(9-10), pp.1360?1377. doi: 10.1130/B30020.1
<2010-05>
Blisniuk, K., Rockwell, T., Owen, L., Oskin, M., Lippincott, C., Caffee, M., and Dortch, J. (2010), Late Quaternary slip rate gradient defined using high-resolution topography and 10Be dating of offset landforms on the southern San Jacinto Fault zone, California: J. Geophysical Research v. 115, B08401, doi:10.1029/2009JB006346
<2011-33>
Toke, N.A., J.R. Arrowsmith, M.J. Rymer, A. Landgraf, D. Haddad, M. Busch, J. Coyan, and A. Hannah (2011), Late Holocene slip rate of the San Andreas Fault and its accommodation by creep and moderate magnitude earthquakes at Parkfield, California, Geology doi: 10.1130/G31498.1
<2012-02>
Borsa, A., Minster J.B. (2012), Rapid Determination of Near-Fault Earthquake Deformation Using Differential LiDAR. Bulletin of the Seismological Society of America. DOI: 102:1335-1347
<2012-18>
Haddad, D. E., Akciz, S. O., Arrowsmith, J R., Rhodes, D. D., Oldow, J. S., Zielke, O., Toke, N. A., Haddad, A. G., Mauer, J., and Shilpakar, P. (2012), Applications of airborne and terrestrial laser scanning to paleoseismology, in: Seeing the True Shape of Earth¡¯s Surface: Applications of Airborne and Terrestrial Lidar in the Geosciences themed issue, Geosphere, v. 8, no. 4, p. 771-786. DOI: 10.1130/GES00701.1
<2012-34>
Salisbury, J.B., Rockwell, T.K., Middleton, T.J., Hudnut, K.W. (2012), LiDAR and Field Observations of Slip Distribution for the Most Recent Surface Ruptures along the Central San Jacinto Fault. Bulletin of the Seismological Society of America, 102(2), pp.598?619. doi: 10.1785/0120110068
<2012-39>
Zielke, O., Arrowsmith, R.J., Ludwig, L.G., Akciz, S.O. (2012), High-Resolution Topography-Derived Offsets along the 1857 Fort Tejon Earthquake Rupture Trace, San Andreas Fault. Bulletin of the Seismological Society of America, 102(3), pp.1135?1154. doi: 10.1785/0120110230
<2012-40>
Zielke, O. & Arrowsmith, J.R. (2012), LiDiCaoz and LiDARimager -- MATLAB GUIs for LiDAR data handling and lateral displacement measurement. Geosphere, 8(1), p.206. doi: 10.1130/GES00686.1
<2013-20>
Krishnan, A.K., E. Nissen, S. Saripalli, R. Arrowsmith, A. Hinojosa-Corona (2013), Change Detection Using Airborne LiDAR: Applications to Earthquakes, in Desai, Jaydev P., Dudek, Gregory, Khatib, Oussama, Kumar, Vijay, Springer Tracts in Advanced Robotics, 88, 733-743.
<2014-07>
Conway, S. J., M. R. Balme, J. B. Murray, and M. C. Towner (2014), A Signal for Water on Mars: the Comparison of Topographic Long Profiles of Gullies on Earth to Gullies on Mars, 45th Lunar and Planetary Science Conference
<2014-30>
Johnson, K., E. Nissen, S. Saripalli, J.R. Arrowsmith, P. McGarey, K. Scharer, P. Williams, and K. Blisniuk (2014), Rapid Mapping of Ultrafine Fault Zone Topography with Structure from Motion, Geosphere, 10(5), 969-986, doi: 10.1130/GES01017.1
<2014-52>
Tarolli P. (2014), High-resolution Topography for Understanding Earth Surface Processes: Opportunities and Challenges, Geomorphology, 216, 295-312
<2015-13>
Conway, S.J., M.R. Balme, M.A. Kreslavsky, J.B. Murray, and M.C. Towner (2015), The Comparison of Topographic Long Profiles of Gullies on Earth to Gullies on Mars: A Signal of Water on Mars, Icarus, 253, 189-204, doi: 10.1016/j.icarus.2015.03.009
<2015-75>
Zielke, O., Y. Klinger, and J. R. Arrowsmith (2015), Fault Slip and Earthquake Recurrence along Strike-Slip Faults Contributions of High-resolution Geomorphic Data, Tectonophysics, 638, 43-62, doi: 10.1016/j.tecto.2014.11.004
<2016-08>
Salisbury, J.B. (2016), Combining Tectonic Geomorphology and Paleoseismology for Understanding of Earthquake Recurrence, Arizona State University, Doctoral Dissertation
<2017-32>
Salisbury, J.B., T.K. Rockwell, and M.T. Buga (2017), Paleoseismic Evidence for the 21 April 1918 Mw 6.9 Surface Rupture of the Northern Clark Strand of the Central San Jacinto Fault, California, Bulletin of the Seismological Society of America, 107(2), 1027-1032, doi: 10.3390/rs9030283
<2017-67>
Johnson, K. (2017), Applications of High Resolution Topography in Tectonic Geomorphology, Doctoral Dissertation, Colorado School of Mines, doi: http://hdl.handle.net/11124/171827
<2017-86>
Robinson, S., W. Bohon, E. Kleber, J. Arrowsmith, and C. Crosby (2017), Applications of High-resolution Topography in Earth Science Education, Geosphere, 13(6), 1887-1900, doi: 10.1130/GES01236.1
<2017-99>
Desjarlais, I. (2017), Constraining Long Term Slip Rates along the San Andreas Fault System Using B4 Lidar and Cosmogenic Beryllium-10 Dating Methods at Millard Canyon, San Gorgonio Pass, California, Master Thesis, California State University, Northridge, http://hdl.handle.net/10211.3/198938
<2018-10>
Salisbury, J., J. Arrowsmith, N. Brown, T. Rockwell, S. Akciz, and L. Ludwig (2018), The Age and Origin of Small Offsets at Van Matre Ranch along the San Andreas Fault in the Carrizo Plain, California, Bulletin of the Seismological Society of America, doi: 10.1785/0120170162
<2018-12>
Stewart, N., Y. Gaudemer, I. Manighetti, L. Serreau, A. Vincendeau, S. Dominguez, L. Matteo, and J. Malavieille (2018), ¡°3D_Fault_Offsets,¡± a Matlab Code to Automatically Measure Lateral and Vertical Fault Offsets in Topographic Data: Application to San Andreas, Owens Valley, and Hope Faults, Journal of Geophysical Research: Solid Earth, 123, doi: 10.1002/2017JB014863
<2018-91>
Ren, Z., O. Zielke, and J. Yu (2018), Active Tectonics in 4D High-Resolution, Journal of Structural Geology, 117, 264-271, doi: 10.1016/j.jsg.2018.09.015
<2019-03>
Ataee, N. (2019), Development of Luminescence Dating Methods in Tectonically Active Settings: Dating Seismic Related Fanglomerates in Alluvial Fans Located in Coachella Valley, Southern California, Master Thesis, Kansas State University, http://hdl.handle.net/2097/39677
<2019-32>
Ludwig, L., S. Akciz, J. Arrowsmith, and J. Salisbury (2019), Reproducibility of San Andreas Fault Slip Rate Measurements at Wallace Creek in the Carrizo Plain, CA, Earth and Space Science, 6(1), 156-165, doi: 10.1029/2017EA000360
<2020-47>
Arrowsmith, J., A. Williams, and T. Rockwell (2020), Investigating the Earthquake Chronology of the Last Millennium along the Cholame Section of the San Andreas Fault: Collaborative Research with Arizona State University and San Diego State University, 2020 USGS NEHRP Final Technical Report
<2020-77>
Li, B., H. Xie, X. Tong, Z. Zhang, and S. Liu (2020), Extracting Satellite Laser Altimetry Footprints with the Required Accuracy by Random Forest, IEEE Geoscience and Remote Sensing Letters, doi: 10.1109/LGRS.2020.2999201
<2020-101>
Sare, R. (2020), Applications of Large-Scale and High-Resolution Topographic Data in Tectonic Geomorphology, PhD Dissertation, Stanford University, http://purl.stanford.edu/dc801sx8291
<2020-103>
Scott, C., S. DeLong, and J. Arrowsmith (2020), Distribution of Aseismic Deformation along the Central San Andreas and Calaveras Faults from Differencing Repeat Airborne Lidar, Geophysical Research Letters, 47, doi: 10.1029/2020GL090628
<2021-02>
Bemis, S., K. Scharer, and J. Dolan (2021), The San Andreas Fault Paleoseismic Record at Elizabeth Lake: Why are There Fewer Surface-Rupturing Earthquakes on the Mojave Section?, Bulletin of the Seismological Society of America, doi: 10.1785/0120200218
<2021-06>
Castillo, B., S. McGill, K. Scharer, D. Yule, D. McPhilips, J. McNeil, S. Saha, N. Brown, and S. Moon (2021), Prehistoric Earthquakes on the Banning Strand of the San Andreas Fault, North Palm Springs, California, Geosphere, 17, doi: 10.1130/GES02237.1
<2021-119>
Williams, R., C. Rowe, K. Okamoto, H. Savage, and E. Eves (2021), How Fault Rocks Form and Evolve in the Shallow San Andreas Fault, Geochemistry, Geophysics, Geosystems, 22, doi: 10.1029/2021GC010092
<2021-125>
Young, E., E. Cowgill, K. Scharer, E. Anderson-Merritt, A. Keen-Zebert, and R. Weldon (2021), Late Holocene Slip Rate of the Mojave Section of the San Andreas Fault near Palmdale, California, Bulletin of the Seismological Society of America, 111, 3204-3225, doi: 10.1785/0120200278
<2022-11>
Efraim, A. and J. Francos (2022), Estimating Rigid Transformations of Noisy Point Clouds Using the Universal Manifold Embedding, Journal of Mathematical Imaging and Vision, 64, 343-363, doi: 10.1007/s10851-022-01070-6
<2022-20>
Li, B., H. Xie, X. Tong, H. Tang, S. Liu, Y. Jin, C. Wang, and Z. Ye (2022), High-Accuracy Laser Altimetry Global Elevation Control Point Data Set for Satellite Topographic Mapping, IEEE Transactions on Geoscience and Remote Sensing, doi: 10.1109/TGRS.2022.3177026
<2023-02>
Akciz, S., L. Ludwig, R. Arrowsmith, T. Capaldi, and E. Rhodes (2023), Channel Incision Ages to the Rescue: An Improved Age for the Penultimate Earthquake That Ruptured the Carrizo Section of the South-Central San Andreas Fault, Bulletin of the Seismological Society of America, 113, 877-887, doi: 10.1785/0120220189
<2023-93>
Moulin, A. and E. Cowgill (2023), The Mojave Section of the San Andreas Fault (California), 2: Pleistocene Records of Near-Field Transpression Illuminate the Atypical Evolution of the Restraining ¡°Big Bend¡±, Geochemistry, Geophysics, Geosystems, 24, doi: 10.1029/2023GC010897
<2023-94>
Moulin, A., E. Cowgill, K. Scharer, D. McPhilipps, and A. Heimsath (2023), The Mojave Section fo the San Andreas Fault (California): 1. Shaping the Terrace Stratigraphy of Little Rock Creek through the Competition between Rapid Strike-Slip Faulting and Laternal Stream Erosion over the Last 40 k.y., Geochemistry, Geophysics, Geosystems, 24, doi: 10.1029/2023GC010869
<2023-103>
Powell, J. (2023), Fault Trace Mapping along the Creeping Section of the Central San Andreas Fault, Master Thesis, Arizona State University